3.3.40 \(\int \frac {\tanh ^3(x)}{(a+b \tanh ^2(x))^{3/2}} \, dx\) [240]

Optimal. Leaf size=52 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}} \]

[Out]

arctanh((a+b*tanh(x)^2)^(1/2)/(a+b)^(1/2))/(a+b)^(3/2)+a/b/(a+b)/(a+b*tanh(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.08, antiderivative size = 52, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {3751, 457, 79, 65, 214} \begin {gather*} \frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^3/(a + b*Tanh[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) + a/(b*(a + b)*Sqrt[a + b*Tanh[x]^2])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 79

Int[((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(-(b*e - a*f
))*(c + d*x)^(n + 1)*((e + f*x)^(p + 1)/(f*(p + 1)*(c*f - d*e))), x] - Dist[(a*d*f*(n + p + 2) - b*(d*e*(n + 1
) + c*f*(p + 1)))/(f*(p + 1)*(c*f - d*e)), Int[(c + d*x)^n*(e + f*x)^(p + 1), x], x] /; FreeQ[{a, b, c, d, e,
f, n}, x] && LtQ[p, -1] && ( !LtQ[n, -1] || IntegerQ[p] ||  !(IntegerQ[n] ||  !(EqQ[e, 0] ||  !(EqQ[c, 0] || L
tQ[p, n]))))

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rule 457

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 3751

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff/f), Subst[Int[(d*ff*(x/c))^m*((a + b*(ff*x)^n)^p/(c^2
 + ff^2*x^2)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rubi steps

\begin {align*} \int \frac {\tanh ^3(x)}{\left (a+b \tanh ^2(x)\right )^{3/2}} \, dx &=\text {Subst}\left (\int \frac {x^3}{\left (1-x^2\right ) \left (a+b x^2\right )^{3/2}} \, dx,x,\tanh (x)\right )\\ &=\frac {1}{2} \text {Subst}\left (\int \frac {x}{(1-x) (a+b x)^{3/2}} \, dx,x,\tanh ^2(x)\right )\\ &=\frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{(1-x) \sqrt {a+b x}} \, dx,x,\tanh ^2(x)\right )}{2 (a+b)}\\ &=\frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}}+\frac {\text {Subst}\left (\int \frac {1}{1+\frac {a}{b}-\frac {x^2}{b}} \, dx,x,\sqrt {a+b \tanh ^2(x)}\right )}{b (a+b)}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.09, size = 52, normalized size = 1.00 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a+b \tanh ^2(x)}}{\sqrt {a+b}}\right )}{(a+b)^{3/2}}+\frac {a}{b (a+b) \sqrt {a+b \tanh ^2(x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^3/(a + b*Tanh[x]^2)^(3/2),x]

[Out]

ArcTanh[Sqrt[a + b*Tanh[x]^2]/Sqrt[a + b]]/(a + b)^(3/2) + a/(b*(a + b)*Sqrt[a + b*Tanh[x]^2])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(286\) vs. \(2(44)=88\).
time = 0.64, size = 287, normalized size = 5.52

method result size
derivativedivides \(\frac {1}{b \sqrt {a +b \left (\tanh ^{2}\left (x \right )\right )}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(287\)
default \(\frac {1}{b \sqrt {a +b \left (\tanh ^{2}\left (x \right )\right )}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}-\frac {b \left (2 b \left (1+\tanh \left (x \right )\right )-2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b -2 b \left (1+\tanh \left (x \right )\right )+2 \sqrt {a +b}\, \sqrt {b \left (1+\tanh \left (x \right )\right )^{2}-2 b \left (1+\tanh \left (x \right )\right )+a +b}}{1+\tanh \left (x \right )}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}-\frac {1}{2 \left (a +b \right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {b \left (2 b \left (\tanh \left (x \right )-1\right )+2 b \right )}{\left (a +b \right ) \left (4 b \left (a +b \right )-4 b^{2}\right ) \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}+\frac {\ln \left (\frac {2 a +2 b +2 b \left (\tanh \left (x \right )-1\right )+2 \sqrt {a +b}\, \sqrt {b \left (\tanh \left (x \right )-1\right )^{2}+2 b \left (\tanh \left (x \right )-1\right )+a +b}}{\tanh \left (x \right )-1}\right )}{2 \left (a +b \right )^{\frac {3}{2}}}\) \(287\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a+b*tanh(x)^2)^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/b/(a+b*tanh(x)^2)^(1/2)-1/2/(a+b)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)-b/(a+b)*(2*b*(1+tanh(x))-2*b)/
(4*b*(a+b)-4*b^2)/(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2)+1/2/(a+b)^(3/2)*ln((2*a+2*b-2*b*(1+tanh(x))+2*(a
+b)^(1/2)*(b*(1+tanh(x))^2-2*b*(1+tanh(x))+a+b)^(1/2))/(1+tanh(x)))-1/2/(a+b)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)
+a+b)^(1/2)+b/(a+b)*(2*b*(tanh(x)-1)+2*b)/(4*b*(a+b)-4*b^2)/(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2)+1/2/(a
+b)^(3/2)*ln((2*a+2*b+2*b*(tanh(x)-1)+2*(a+b)^(1/2)*(b*(tanh(x)-1)^2+2*b*(tanh(x)-1)+a+b)^(1/2))/(tanh(x)-1))

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^3/(b*tanh(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 980 vs. \(2 (44) = 88\).
time = 0.44, size = 2525, normalized size = 48.56 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*(((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + 2*(a*b - b^2)*cosh(x)
^2 + 2*(3*(a*b + b^2)*cosh(x)^2 + a*b - b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 + (a*b - b^2)*co
sh(x))*sinh(x))*sqrt(a + b)*log(((a^3 + a^2*b)*cosh(x)^8 + 8*(a^3 + a^2*b)*cosh(x)*sinh(x)^7 + (a^3 + a^2*b)*s
inh(x)^8 + 2*(2*a^3 + a^2*b)*cosh(x)^6 + 2*(2*a^3 + a^2*b + 14*(a^3 + a^2*b)*cosh(x)^2)*sinh(x)^6 + 4*(14*(a^3
 + a^2*b)*cosh(x)^3 + 3*(2*a^3 + a^2*b)*cosh(x))*sinh(x)^5 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^4 + (70*(
a^3 + a^2*b)*cosh(x)^4 + 6*a^3 + 4*a^2*b - a*b^2 + b^3 + 30*(2*a^3 + a^2*b)*cosh(x)^2)*sinh(x)^4 + 4*(14*(a^3
+ a^2*b)*cosh(x)^5 + 10*(2*a^3 + a^2*b)*cosh(x)^3 + (6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x))*sinh(x)^3 + a^3 +
 3*a^2*b + 3*a*b^2 + b^3 + 2*(2*a^3 + 3*a^2*b - b^3)*cosh(x)^2 + 2*(14*(a^3 + a^2*b)*cosh(x)^6 + 15*(2*a^3 + a
^2*b)*cosh(x)^4 + 2*a^3 + 3*a^2*b - b^3 + 3*(6*a^3 + 4*a^2*b - a*b^2 + b^3)*cosh(x)^2)*sinh(x)^2 + sqrt(2)*(a^
2*cosh(x)^6 + 6*a^2*cosh(x)*sinh(x)^5 + a^2*sinh(x)^6 + 3*a^2*cosh(x)^4 + 3*(5*a^2*cosh(x)^2 + a^2)*sinh(x)^4
+ 4*(5*a^2*cosh(x)^3 + 3*a^2*cosh(x))*sinh(x)^3 + (3*a^2 + 2*a*b - b^2)*cosh(x)^2 + (15*a^2*cosh(x)^4 + 18*a^2
*cosh(x)^2 + 3*a^2 + 2*a*b - b^2)*sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(3*a^2*cosh(x)^5 + 6*a^2*cosh(x)^3 + (3*a^
2 + 2*a*b - b^2)*cosh(x))*sinh(x))*sqrt(a + b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2
 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*(a^3 + a^2*b)*cosh(x)^7 + 3*(2*a^3 + a^2*b)*cosh(x)^5 + (6*a^3 + 4*a
^2*b - a*b^2 + b^3)*cosh(x)^3 + (2*a^3 + 3*a^2*b - b^3)*cosh(x))*sinh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 1
5*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) +
((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + 2*(a*b - b^2)*cosh(x)^2 + 2
*(3*(a*b + b^2)*cosh(x)^2 + a*b - b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 + (a*b - b^2)*cosh(x))
*sinh(x))*sqrt(a + b)*log(-((a + b)*cosh(x)^4 + 4*(a + b)*cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 - 2*b*cosh(x)^
2 + 2*(3*(a + b)*cosh(x)^2 - b)*sinh(x)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(a + b
)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*((a +
b)*cosh(x)^3 - b*cosh(x))*sinh(x) + a + b)/(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*sqrt(2)*((a^2 + a*
b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 + a^2 + a*b)*sqrt(((a + b)*cosh(x)^2 + (a
 + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*co
sh(x)^4 + 4*(a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)*sinh(x)^3 + (a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*sinh(x
)^4 + a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4 + 2*(a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x)^2 + 2*(a^3*b + a^2*b^2 - a
*b^3 - b^4 + 3*(a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^2 + 4*((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^
4)*cosh(x)^3 + (a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x))*sinh(x)), -1/2*(((a*b + b^2)*cosh(x)^4 + 4*(a*b + b^2)
*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + 2*(a*b - b^2)*cosh(x)^2 + 2*(3*(a*b + b^2)*cosh(x)^2 + a*b - b^2)
*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 + (a*b - b^2)*cosh(x))*sinh(x))*sqrt(-a - b)*arctan(sqrt(2)*
(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 + a + b)*sqrt(-a - b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(
x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a^2 + a*b)*cosh(x)^4 + 4*(a^2 + a*b)*cosh(x)*sinh
(x)^3 + (a^2 + a*b)*sinh(x)^4 + (2*a^2 + a*b - b^2)*cosh(x)^2 + (6*(a^2 + a*b)*cosh(x)^2 + 2*a^2 + a*b - b^2)*
sinh(x)^2 + a^2 + 2*a*b + b^2 + 2*(2*(a^2 + a*b)*cosh(x)^3 + (2*a^2 + a*b - b^2)*cosh(x))*sinh(x))) + ((a*b +
b^2)*cosh(x)^4 + 4*(a*b + b^2)*cosh(x)*sinh(x)^3 + (a*b + b^2)*sinh(x)^4 + 2*(a*b - b^2)*cosh(x)^2 + 2*(3*(a*b
 + b^2)*cosh(x)^2 + a*b - b^2)*sinh(x)^2 + a*b + b^2 + 4*((a*b + b^2)*cosh(x)^3 + (a*b - b^2)*cosh(x))*sinh(x)
)*sqrt(-a - b)*arctan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 - 1)*sqrt(-a - b)*sqrt(((a + b)*cosh(
x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/((a + b)*cosh(x)^4 + 4*(a + b)*
cosh(x)*sinh(x)^3 + (a + b)*sinh(x)^4 + 2*(a - b)*cosh(x)^2 + 2*(3*(a + b)*cosh(x)^2 + a - b)*sinh(x)^2 + 4*((
a + b)*cosh(x)^3 + (a - b)*cosh(x))*sinh(x) + a + b)) - 2*sqrt(2)*((a^2 + a*b)*cosh(x)^2 + 2*(a^2 + a*b)*cosh(
x)*sinh(x) + (a^2 + a*b)*sinh(x)^2 + a^2 + a*b)*sqrt(((a + b)*cosh(x)^2 + (a + b)*sinh(x)^2 + a - b)/(cosh(x)^
2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^4 + 4*(a^3*b + 3*a^2*b^2 + 3
*a*b^3 + b^4)*cosh(x)*sinh(x)^3 + (a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*sinh(x)^4 + a^3*b + 3*a^2*b^2 + 3*a*b^3
+ b^4 + 2*(a^3*b + a^2*b^2 - a*b^3 - b^4)*cosh(x)^2 + 2*(a^3*b + a^2*b^2 - a*b^3 - b^4 + 3*(a^3*b + 3*a^2*b^2
+ 3*a*b^3 + b^4)*cosh(x)^2)*sinh(x)^2 + 4*((a^3*b + 3*a^2*b^2 + 3*a*b^3 + b^4)*cosh(x)^3 + (a^3*b + a^2*b^2 -
a*b^3 - b^4)*cosh(x))*sinh(x))]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\tanh ^{3}{\left (x \right )}}{\left (a + b \tanh ^{2}{\left (x \right )}\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**3/(a+b*tanh(x)**2)**(3/2),x)

[Out]

Integral(tanh(x)**3/(a + b*tanh(x)**2)**(3/2), x)

________________________________________________________________________________________

Giac [B] Leaf count of result is larger than twice the leaf count of optimal. 313 vs. \(2 (44) = 88\).
time = 0.55, size = 313, normalized size = 6.02 \begin {gather*} \frac {\frac {{\left (a^{3} + a^{2} b\right )} e^{\left (2 \, x\right )}}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}} + \frac {a^{3} + a^{2} b}{a^{3} b + 2 \, a^{2} b^{2} + a b^{3}}}{\sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}} + \frac {\sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} + \sqrt {a + b} \right |}\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} - \frac {\sqrt {a + b} \log \left ({\left | -\sqrt {a + b} e^{\left (2 \, x\right )} + \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b} - \sqrt {a + b} \right |}\right )}{2 \, {\left (a^{2} + 2 \, a b + b^{2}\right )}} - \frac {\log \left ({\left | -{\left (\sqrt {a + b} e^{\left (2 \, x\right )} - \sqrt {a e^{\left (4 \, x\right )} + b e^{\left (4 \, x\right )} + 2 \, a e^{\left (2 \, x\right )} - 2 \, b e^{\left (2 \, x\right )} + a + b}\right )} {\left (a + b\right )} - \sqrt {a + b} {\left (a - b\right )} \right |}\right )}{2 \, {\left (a + b\right )}^{\frac {3}{2}}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^3/(a+b*tanh(x)^2)^(3/2),x, algorithm="giac")

[Out]

((a^3 + a^2*b)*e^(2*x)/(a^3*b + 2*a^2*b^2 + a*b^3) + (a^3 + a^2*b)/(a^3*b + 2*a^2*b^2 + a*b^3))/sqrt(a*e^(4*x)
 + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + 1/2*sqrt(a + b)*log(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4
*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) + sqrt(a + b)))/(a^2 + 2*a*b + b^2) - 1/2*sqrt(a + b)*log
(abs(-sqrt(a + b)*e^(2*x) + sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x) + a + b) - sqrt(a + b)))/(a
^2 + 2*a*b + b^2) - 1/2*log(abs(-(sqrt(a + b)*e^(2*x) - sqrt(a*e^(4*x) + b*e^(4*x) + 2*a*e^(2*x) - 2*b*e^(2*x)
 + a + b))*(a + b) - sqrt(a + b)*(a - b)))/(a + b)^(3/2)

________________________________________________________________________________________

Mupad [B]
time = 2.06, size = 45, normalized size = 0.87 \begin {gather*} \frac {\mathrm {atanh}\left (\frac {\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}}{\sqrt {a+b}}\right )}{{\left (a+b\right )}^{3/2}}+\frac {a}{\left (b^2+a\,b\right )\,\sqrt {b\,{\mathrm {tanh}\left (x\right )}^2+a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^3/(a + b*tanh(x)^2)^(3/2),x)

[Out]

atanh((a + b*tanh(x)^2)^(1/2)/(a + b)^(1/2))/(a + b)^(3/2) + a/((a*b + b^2)*(a + b*tanh(x)^2)^(1/2))

________________________________________________________________________________________